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Abstract. In this article we intend to discuss the evolution of polarized and unpolarized structure functions
in the (x,Q2) plane. We analyze the proton data on the spin dependence asymmetry A1(x,Q2), by making
the dynamical assumption that at low resolution energies, the hadrons consist only of valence quarks and
the scaling violation of F2(x,Q2) at low x comes only from the gluons density. While the sea quark and
the gluon distributions are calculated using the inverse Mellin technique and the various moments of the
valence quarks, the valence quark distribution itself is obtained from the relativistic quark-exchange model.
A comparison is made with the corresponding available experimental data. Finally in agreement with the
data, it is demonstrated that there is no significant Q2-dependence of asymmetry A1(x,Q2) for x ranging
0.014 ≤ x ≤ 0.25.

1 Introduction

The spin dependence structure function (SSF), g1(x,Q2),
and the spin independence structure functions (SF),
F2(x,Q2) or F1(x,Q2), resulting from deep inelastic
lepton-nucleon scattering have become very important
quantities in understanding of the polarized and the un-
polarized quark and gluon distributions in the nucleons
[1]. The above structure functions depend both on x, the
fractional momentum carried by struck parton, and Q2,
the squared four-momentum transfer of the virtual pho-
tons. An experimental study of Q2-dependence of the nu-
cleon SSF is carried out by measuring the longitudinal
asymmetry A1(x,Q2) = g1(x,Q2)/F1(x,Q2), i.e the ratio
of polarized to unpolarized structure functions. The most
known theoretical predictions on SSF of the nucleon were
done by Bjorken [2] and Ellis and Jaffe [3] for the so called
the first moment value Γ1 =

∫ 1

0
g1(x,Q2) dx.

The Γ1 value calculation requires the spin structure
function g1(x,Q2) at the same Q2 but in the all x ranges.
To derive the moments of the structure functions from ex-
periment a right extrapolation of the structure functions
to the small x for fixed Q2 must be done. HERRA reports
on F2(x,Q2) reveal a rapid rise of the proton structure
function F2(x,Q2) as x decreases below 10−2 [4]. Accord-
ing to the GLAP evolution equations [5], g1 is expected
to evolve logarithmically with Q2. A similar Q2 depen-

dence has also been observed in the spin averaged struc-
ture functions F1(x,Q2) and F2(x,Q2). Although the Q2-
dependence of g1 and F1 are similar, but their precise
behavior is sensitive to the polarized and the unpolarized
quark and gluon distribution functions. At present in the
most of experiments the asymmetry A1 is taken to be Q2-
independent [4,6–8].

On the other hand, the perturbative QCD predicts
that the nucleons should mainly consist of sea quarks and
gluons when we work at low (high) values of x (Q2). How-
ever, a direct measurement of the gluon density from the
experiments is not possible. One should require a direct
relation between F2(x,Q2) and the gluons distribution
G(x,Q2). In this direction, different approximations have
been used in the literature to relate the Q2-dependence of
F2(x,Q2) to G(x,Q2). One of the main aims of this article
is to test such approximations, the details of which are
defered until later on.

In order to study the Q2-dependence of the asymmetry
A1 we proceed in the following three steps :

(i) Instead of using field operator approaches [9,10]
to calculate the valence quark distributions, we use the
quark-exchange formalism which was originally intro-
duced by Hoodbhoy and Jaffe [HJ] to investigate the quark
distributions in nuclear systems [11,12]. This formalism
has been applied by one of the authors (MM) to light
nuclei [13] and nuclear matter [14] and was recently re-
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formulated by us to derive the spin structure function of
the three-nucleon systems as well as the proton and neu-
tron [15]. We think, this is a reasonable motivation for the
initial conditions for the QCD evolution.

(ii) A a possible way to determine theoretically the
gluon and the sea quark content of the nucleon, one can
imagine the nucleon to consist essentially of valence quarks
at the static point µ2

0. The gluons are then generated
through bermsstrahlung off the valence quarks in high en-
ergies and part of the gluons can materialize into the sea
quarks [16].

(iii) Finally we calculate the spin structure func-
tion g1(x,Q2) and the unpolarized structure functions
F1(x,Q2) and F2(x,Q2) according to the GLAP evolu-
tion equations [5] at different values of Q2. For the latter
we also use the idea that at low x the scaling violation of
structure functions are given by the gluon density alone
and it does not not depend on the quark density. A com-
parison will also be made between the two schemes.

Thus the paper will be organized as follows: In Sect. 2
we briefly explain the quark-exchange model and we
calculate the valence quark momentum distribution. In
Sect. 3, the inverse Mellin transformation and the par-
ton distributions are introduced. In Sect. 4, we discuss
the Q2-evolution of parton distributions and the unpo-
larized structure functions. A similar calculation will be
performed for the Q2- dependence of polarized parton dis-
tributions and the SSF. Finally, in Sect. 5 the numerical
results as well as the conclusion are presented.

2 Quark-Exchange Formalism

Let us start with a brief summary of the quark-exchange
formalism. We take the nucleon state to be composed of
three valence quarks [15]

|α〉 = Nα† |0〉 =
1√
3!
Nα
µ1µ2µ3

q†µ1
q†µ2

q†µ3
|0〉 (1)

where α (µi) describe the nucleon (quark) states
{P,MS,MT} ( {k,ms,mt, c}). As usual q†µ (Nα†) denote
the creation operators for the quarks (nucleons) with the
state index µ (α). With the convention that a repeated
index means a summation as well as integration over k,
the totally antisymmetric nucleon wave function Nα

µ1µ2µ3

are written as,

Nα
µ1µ2µ3

= D(µ1, µ2, µ3;αi)

×δ(k1 + k2 + k3 −P)φ(k1,k2,k3,P) (2)

where φ(k1,k2,k3,P) is the three nucleon wave function
which is approximated by a Gaussian form (b ' nucleons
radius) :

φ(k1,k2,k3,P) =
(

3b4

π2

) 3
4

· exp
[
−b2

(
(k2

1 + k2
2 + k2

3)
2

+
b2P2

6

)]
(3)

D(µ1, µ2, µ3;αi) are the product of four Clebsch -Gordon
coefficients, Cj1j2j

m1m2m, ( εc1c2c3 are the color factors ) which
are defined as,

D(µ1, µ2, µ3;αi) =
1√
3!
εc1c2c3

1√
2

∑
s,t=0,1

C
1
2 s 1

2
msσmsMSαi

· C
1
2

1
2 s

msµmsνmsC
1
2 t 1

2
mtσmtMTαi

C
1
2

1
2 t

mtµmtνmt (4)

Now, based on the nucleon creation operators, we can
define the nucleus states as,

|Ai = 3〉 = (3!)−
1
2χα1α2α3Nα1

†Nα2
†Nα3

† |0〉 (5)

where χα1α2α3 are the complete antisymmetric nuclear
wave functions (they are taken from the Faddeev calcu-
lation with the Reid soft core potential [15]) which could
be interpreted as the center of mass motion of the three
nucleons. Using the same definition as the one we did for
the C-G coefficients in (4) i. e.

D(α1, α2, α3;Ai) =
1√
2

∑
S,T=0,1

C
1
2 S 1

2
MSα1

MSMSi

· C
1
2

1
2 S

MSα2
MSα3

MSC
1
2 T 1

2
MTα1

MTMTi

· C
1
2

1
2 T

MTα2
MTα3

MT (6)

Then we can write the nuclear wave functions as

χα1α2α3 = χ(P,q)D(α1, α2, α3;Ai) (7)

Relevant information comes from the momentum dis-
tribution of the constituent quarks, which can be defined
for the valence quarks with fixed flavors and spin polar-
ization, in the three nucleon system as,

ρµ̄(k;Ai) =
〈Ai = 3|q†µ̄qµ̄|Ai = 3〉
〈Ai = 3|Ai = 3〉 (8)

The sign bar means no summation or integration on the
repeated index µ. The calculation of 〈Ai = 3|Ai = 3〉
would become straightforward by doing summation over
µ̄,

〈Ai = 3|Ai = 3〉 =
1
9
〈Ai = 3|q†µqµ|Ai = 3〉

= χ∗α1α2α3(δα1β1δα2β2δα3β3 − Eα1α2α3,β1β2β3
µµ )χβ1β2β3

where

Eα1α2α3,β1β2β3
µµ = Nα2

µ1µ2µ3
N β2
µ2µ3ρ1

· Nα3
ρ1ρ2ρ3

N β3
µ1ρ2ρ3

δα1β1 (9)

After performing some algebra, one can drive the fol-
lowing equation for the expectation value of q†q,

〈Ai = 3|q†µ̄qµ̄|Ai = 3〉
= 9χ∗α1α2α3(Uα1α2α3,β1β2β3

µ̄µ̄ − Vα1α2α3,β1β2β3
µ̄µ̄ )χβ1β2β3
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where

Uα1α2α3,β1β2β3
µ̄µ̄ = Nα1

µ̄σ2σ3
N β1
µ̄σ2σ3

δα2β2δα3β3 (10)

and

Vα1α2α3,β1β2β3
µ̄µ̄ = 3Nα1

µ̄σ2σ3
N β1
µ̄σ2σ3

Nα2
µ1µ2µ3

N β2
ρ1µ2µ3

· Nα3
ρ1ρ2ρ3

N β3
µ1ρ2ρ3

+ 4Nα2
µ̄µ1µ2

N β2
µ̄µ2ρ1

Nα3
ρ1ρ2ρ3

N β3
µ1ρ2ρ3

δα1β1

+ 2Nα2
µ1µ2µ3

N β2
µ̄µ2µ3

Nα3
µ̄ρ2ρ3

N β2
µ1ρ2ρ3

δα1β1

(11)

Assuming the nucleus to be in the rest frame and defin-
ing the Fourier transform of χ(P,q), we can calculate
the expectation values of different terms in the (10) and
(11)

χ∗α1α2α3Nα1
µ̄σ2σ3

N β1
µ̄σ2σ3

δα2β2δα3β3χβ1β2β3

=
(

3b2

2π2

) 3
2

exp[−3
2

b2k2]D(µ̄, σ2, σ3;α1)

·D(µ̄, σ2, σ2, σ3;β1)D(α1, α2, α3;Ai)

·D(β1, β2, β3;Ai)δα2β2δα3β3 (12)

χ∗α1α2α3Nα1
µ̄σ2σ3

N β1
µ̄σ2σ3

Nα2
µ1µ2µ3

N β2
ρ1µ2µ3

Nα3
ρ1ρ2ρ3

· N β3
µ1ρ2ρ3

χβ1β2β3

= I
(

27b2

8π2

) 3
2

exp[−3
2

b2k2]D(µ̄, σ2, σ3;α1)

·D(µ̄, σ2, σ3;β1)D(µ1, µ2, µ3;α2)
·D(ρ1, µ2, µ3;β2)D(ρ1, ρ2, ρ3;α3)
·D(µ1, ρ2, ρ3;β3)D(α1, α2, α3;Ai)
·D(β1, β2, β3;Ai) (13)

χ∗α1α2α3Nα2
µ̄µ1µ2

N β2
µ̄µ2ρ1

Nα3
ρ1ρ2ρ3

N β3
µ1ρ2ρ3

δα1β1χβ1β2β3

= I
(

27b2

7π2

) 3
2

exp[−12
7

b2k2]D(µ1, µ2, µ̄;α2)

·D(ρ1, µ2, µ̄;β2)D(ρ1, ρ2, ρ3;α3)
·D(µ1, ρ2, ρ3;β3)D(α1, α2, α3;Ai)

·D(β1, β2, β3;Ai)δα1β1 (14)

χ∗α1α2α3Nα2
µ1µ2µ3

N β2
µ̄µ2µ3

Nα3
µ̄ρ2ρ3

N β2
µ1ρ2ρ3δα1 β1

χβ1β2β3

= I
(

27b2

4π2

) 3
2

exp[−3b2k2]D(µ1, µ2, µ3;α2)

·D(µ2, µ3, µ̄;β2)D(µ̄, ρ2, ρ3;α3)
·D(µ1, ρ2, ρ3;β3)D(α1, α2, α3;Ai)

·D(β1, β2, β3;Ai)δα1β1 (15)

χ∗α1α2α3δα1β1Nα2
µ1µ2µ3

N β2
µ2µ3ρ1

Nα3
ρ1ρ2ρ3

N β3
µ1ρ2ρ3δα1 β1

χβ1β2β3

= I
(

3
2

)3

D(µ1, µ2, µ3;α2)D(ρ1, µ2, µ3;β2)

·D(ρ1, ρ2, ρ3;α3)D(µ1, ρ2, ρ3;β3)

·D(α1, α2, α3;Ai)D(β1, β2, β3;Ai)δα1β1 (16)

where

I = 8π2

∫ ∞
0

x2 dx
∫ ∞

0

y2 dy
∫ 1

−1

d(cosθ)

· exp[−3x2

4b2
]|χ(x, y, cosθ)|2 (17)

The above equations, i.e. (12)-(16), have been derived
using the same approximation as used by HJ [11,12] and
other authors [13], specially a leading order expansion for
χ(P,q) [15].

3 Inverse Mellin transformation and parton
distribution functions

The most natural possibility is, to consider the nucleon
as consisting entirely of valence quarks at the static point
µ2

0, and generating the gluon and sea quark distributions
purely radiatively at Q2 > µ2

0 [16]. We have two essential
cases : (A) Unpolarized and (B) Polarized.

3.1 Unpolarized Parton Distributions

It is well known that the Q2 dependence implied by QCD
could be simply expressed in terms of the parton density
moments. One therefore can write in the N-moment space,

MP(n,Q2) =
∫ 1

0

xn−1P(x,Q2) dx (18)

where P = qv, q̄,G and MP(n,Q2) is the Mellin transform
of the parton distribution, P(x,Q2). Here we assume an
SU(3) flavor-symmetric sea quark distributions q̄ = ū =
d̄ = s̄ = s. In addition we consider the sea quark and the
gluon contributions to vanish in the static point µ2

0, i.e.,

G(x, µ2
0) = 0 q̄(x, µ2

0) = 0 (19)

The evolution procedure yields the gluon and the sea
quark distributions.

∑
q=u,d

Mv
q(n,Q2) =

{ ∑
q=u,d

Mv
q(n, µ2

0)
}

L−an
NS

Mq̄(n,Q2) =
1
6

{ ∑
q=u,d

Mv
q(n, µ2

0)
}

· (αnL−an
− + (1− αn)L−an

+ − L−an
NS)

MG(n,Q2) =
{ ∑

q=u,d

Mv
q(n, µ2

0)
}
αn(1− αn)

βn

· (L−an
− − L−an

+) (20)
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where an
i = −2Pn

i
β0

and β0, αn and βn are written as fol-
lowing,

β0 =
(

11− 2
3

Nf

)
αn =

Pn
qq − Pn

+

Pn
− − Pn

+

(21)

βn =
Pn

qg

Pn
− − Pn

+

Nf is the number of active quark flavors (in our case Nf =
2, 3 and 4) and

Pn
± =

1
2

[Pn
qq + Pn

gg ±
√

(Pn
gg − Pn

qq)2 + 4Pn
qgPn

gq]

Pn
NS = Pn

qq =
4
3

[
3
2

+
1

n(n + 1)
− 2S1(n)]

Pn
qg =

(1
2)

(n2 + n + 2)
n(n + 1)(n + 2)

(22)

Pn
gq =

4
3

(N2 + n + 2)
n(n2 − 1)

Pn
gg = 3[

11
6
− Nf

9
+

2
n(n− 1)

2
(n + 1)(n + 2)

− 2S1(n)]

with

S1(n) = ψ(n + 1) + γE,

ψ(n) =
d
dn

ln Γ(n), (23)

γE = 0.5772

where γE is the Euler’s constant [17].
The quantity L, the coupling ratio, is defined as (Λ2 is

the QCD cut off parameter),

L =
αs(µ2

0)
αs(Q2)

=
ln(Q

2

Λ2 )

ln( µ
2
0
Λ2 )

(24)

and can be related to the second moment of the nucleon
(i.e. the proton and the neutron on average) structure
function [18,19]

MN(2,Q2) =
∫ 1

0

FN
2 (x,Q2) dx

=
2
9

[
9
25

+
16
25

L−
50
81

]
+

1
18

L−
32
81 (25)

Experimentally [20] MN(2,Q2) = 0.127 at Q2 = 15 GeV2.
So one can calculate L at the other Q2 values.

All of the above solutions in the N-moment space can
be inverted into the x-space by applying the inverse Mellin
(M−1) transformation of (19) [21]

P(x,Q2) =M−1[MP(n,Q2)]

=
1

2πi

∫ c+i∞

c−i∞
x−nMP(n,Q2) dn (26)

3.2 Polarized Parton Distributions

Like the unpolarized case, the Q2-dependence can be cal-
culated from the parton moments, which are defined as:

∆MP(n,Q2) =
∫ 1

0

xn−1∆P(x,Q2) dx (27)

where P = qv, q̄,G and ∆MP(n,Q2) are the Mellin trans-
forms of the polarized parton distributions, ∆P(x,Q2).
Again we assume that the SU(3) flavor-symmetry is valid,
and that the sea quark and the gluon contributions are no
longer exist at µ2

0.
As in the unpolarized case, the polarized parton mo-

ments obey a similar set of equations, i.e. (19) for the
Q2-evolution, but with the following modification in the
splitting function and some other parameters, as

∆Pn
± =

1
2

[
∆Pn

qq + ∆Pn
gg

±
√

(∆Pn
gg −∆Pn

qq)2 + 4∆Pn
qg∆Pn

gq

]
∆Pn

NS = ∆Pn
qq =

4
3

[
3
2

+
1

n(n + 1)
− 2S1(n)]

∆Pn
qg = Nf

(n− 1)
n(n + 1)

(28)

∆Pn
gq =

4
3

(n + 2)
n(n + 1)

∆Pn
gg = 3[

11
6
− Nf

9
+

4
n(n + 1)

− 2S1(n)]

4 Q2 dependence of parton distributions

By considering the relativistic corrections, the valence par-
ton distribution at each Q2 can be related to momen-
tum distribution for each flavor according to the following
equation [15,22]

qv(x,Q2;Ai) =
1

(1− x)2

·
∫
ρq(k;Ai)δ

(
x

(1− x)
− k+

M

)
dk (29)

After doing the angular integration, we get,

qv(x,Q2;Ai) =
2πM

(1− x)2

∫ ∞
kmin

ρq(k;Ai)k dk (30)

with

kmin(x) =
( xM1−x + ε0)2 −m2

2( xM1−x + ε0)
(31)

where m (M) is the quark (nucleon) mass , k+ is the light-
cone momentum of initial quark and ε0 is the quark bind-
ing energy. For each Q2-value, we are able to calculate
the corresponding values of m and ε0. The valence quark
distributions of a bound nucleon can be derived from the
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free nucleon valence quark distribution function by using
the convolution approximation,

qv(x,Q2;Ai) =
∑
N

∫
qv(

x

yAi
, Q2;N)fN/Ai(yAi) dyAi

(32)
where fN/Ai(yAi) is the nucleon momentum distribution
in the nucleus. By taking into account the fact that
fN/Ai(yAi) is large only around x

〈yAi 〉
we can write [15]

qv(
x

〈yAi〉
, Q2;N) = qv(x,Q2;Ai) (33)

with 〈yAi〉 = 1+ ε̄
M and ε̄ being the average removal energy

of the nucleon. In general, we know that, this is not a good
approximation, but having said that , there is not much
difference between the structure functions of 3He ( 3H) (
obviously per nucleon) and the neutron (proton). So even
without using such an approximation one can also takes
3He ( 3H) as the SSF of neutrons and (protons) [15].

A typical ansatz for the parton distribution is usually
parameterized as [23]

x P(x,Q2) = APηPx
aP (1− x)bP (1 + γPx+ %Px

1
2 ) (34)

where AP the normalization factor is given by,

A−1
P =

(
1 + γP

aP
aP + bP + 1

β(aP + bP − 1,bP + 1)
)

+ %Pβ(aP + bP −
1
2
,bP + 1) (35)

The above parameters are calculated by using the quark-
exchange model and the inverse Mellin transformation
method.

The nucleon structure function F2(x,Q2) at given Q2

can be expressed in terms of the various parton distribu-
tions (the unpolarized valence distributions are obtained
by making a spin-average on the polarized valence quark
distributions) i.e.,

F2(x,Q2) = x
∑
q,q̄

e2
q[q(x,Q

2) + q̄(x,Q2)] (36)

On the basis of GLAP equations it is well known that
at low x the dominant source for the F2(x,Q2) scaling
violations is the transition of gluons into quark-antiquark
pairs [24–26]. So it is possible to relate the gluon density
directly to the Q2 dependence of the structure function
F2(x,Q2) i.e.,

∂F2(x,Q2)
∂lnQ2

= 2
∑
q

e2
q

αs
4π

∫ 1

0

G(
x

z,Q2
)Pqg(z) dz (37)

where G(x,Q2) = x G(x,Q2) and Pqg is the quark -gluon
splitting function i.e. [24],

Pqg = (1− z)2 + z2

Several approximate methods have been used to de-
convolute the gluon density directly from F2(x,Q2) [24–
26]. All these methods are based on the simplification

of convolution given in the equation (37) by making an
expansion for the gluon density. The result is the gluon
density G(k.x) (which is proportional to the derivative of
F2(x,Q2)) where the constant k is associated with the
point which we expand the gluon density around it. The
expansion of the gluon density about an arbitrary point
z = α up to the first derivative (which is valid in the limit
of x→ 0) relates the evolution of SF to the gluon density
according to [26],

∂F2(x,Q2)
∂lnQ2

= 2
∑
q

e2
q

αs
4π

2
3
G(

x

1− α (
3
2
− α), Q2) (38)

To evaluate F2(x,Q2) from G(x,Q2), we must parame-
terize the calculated gluon distribution at different Q2 in
terms of gluon density which has been already calculated
at Q2

0 = 4GeV2 in Sect. 3.1 i.e.,

G(x,Q2) = T (x; Q2,Q2
0)G(x,Q2

0)
T (x; Q2,Q2

0) = T1(x; Q2
0) + T2(x; Q2

0) ln Q2 (39)

where T1(x; Q2
0) and T2(x; Q2

0) are defined as following

T1(x; Q2
0) = 0.8354 + .2064 x0.5

T2(x; Q2
0) = 0.1297− 0.1245 x0.5 (40)

For the polarized valence parton distributions at different
Q2, we do not need the above prescription. After imple-
menting the formalism of Sect. 4 and [15], according to the
leading order QCD parton model, the SSF of the nucleon
at different values of Q2 with inclusion of the higher order
corrections can be expressed as [27],

g1(x;Q2) =
1
2

∑
q=u,d,s

e2
q{∆qv(x,Q2) +∆q̄(x,Q2)} (41)

5 Results and discussions

In Figs. 1 to 6 we have plotted the unpolarized proton
structure function F2(x,Q2) versus Q2 for different values
of x i.e., 0.0001, 0.0004, 0.001, 0.0025, 0.004 and 0.0063.
The data are taken from [4].

In each of these figures the dashed curve is evaluated
by using (36). So, first, the valence unpolarized parton dis-
tribution is calculated from Sect. 2 at the static point µ2

0

and second, the evolution equation in Sect. 3.1 is solved to
obtain the corresponding valence and sea-quark contribu-
tions at some Q2 value. The dotted and heavy full curves
represent also F2(x,Q2), the proton SF, but evaluating
the sea-quark contribution from (37) with 3 and 4 flavor
(note that only the factor e2

q will be changed in (37)) re-
spectively. By comparing these figures, we can conclude
that the approximations leading to (37) is not very good.
Since the full and dotted curves have different normal-
ization and slop respect to the dashed curves. So one can
argue that the analytical approximation to the GLAP evo-
lution equations, can make sense if the accuracy of above
calculation have the precision equal or higher than the
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Fig. 1. The unpolarized proton structure function F2(x,Q2)
versus Q2 (GeV2) for fixed x=0.0001. The heavy, dashed and
dotted curves are for different schemes according to text ex-
plaination of Sect. 4. The data are from [4]

Fig. 2. As Fig. 1 but for x=0.0004

experimental data. However,in general, we have got a rea-
sonable results compared to the available data.

In Figs. 7 to 14 we have plotted the ratio A1(x,Q2) =
g1(x,Q2)/F1(x,Q2) versus Q2 for different value of x i.e.,
x= 0.014, 0.025, 0.035, 0.049, 0.077, 0.122, 0.173 and 0.25.
The data have been taken from [6,7]. For these figures the
polarized spin structure function have been calculated us-
ing Sect. 2 ( in order to get polarized valence distributions
at µ2

0) and Sect. 3.2 (in order to find polarized valence
and sea quark distributions at some Q2 value) with three
flavors. Then, (41) have been used to get the final re-
sult on g1(x,Q2). F1(x,Q2) = F2(x,Q2)/x has been taken
from figures 1 to 6. Again it is seen that our results are
reasonably close to the experimental data and for each x
value the ratio has a very smooth behavior with respect
to Q2.

Fig. 3. As Fig. 1 but for x=0.001

Fig. 4. As Fig. 1 but for x=0.0025

Fig. 5. As Fig. 1 but for x=0.004
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Fig. 6. As Fig. 1 but for x=0.0063

Fig. 7. The ratio of polarized to unpolarized proton struc-
ture function A1(x,Q2) = g1(x,Q2)/F1(x,Q2) versus Q2 at
x=0.014. The dotted and dashed curves are the results of dif-
ferent schemes according to the text explanation of Sect. 5.
The data are from [5] and [6]

In summary, we have found that the polarized and un-
polarized nucleon structure function have approximately
the same Q2-dependence as the data and the whole re-
sults are consistent with the available experiments. Our
calculation shows a similar scaling violation as the one
observed in the experiment for the small x. The idea that
at low x the scaling violation of F2(x,Q2) comes from the
gluon density alone and does not depend on the quarks
densities was tested and it was shown that this approx-
imation is only valid under certain conditions. The data
can reasonably be explained by the evolution equation and
the analytical approximation presented here. So in this re-
spect we may conclude that the gluons are the dominant
source of the partons in the small x region. However fur-
ther work should be done in this direction.

Fig. 8. As Fig. 7 but for x=0.025

Fig. 9. As Fig. 7 but for x=0.035

Fig. 10. As Fig. 7 but for x=0.049
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Fig. 11. As Fig. 7 but for x=0.077

Fig. 12. As Fig. 7 but for x=0.122

In this work we have not considered the effect of next-
to-leading order (NLO) corrections to the calculated par-
ton distributions. In [16] we find that NLO corrections are
not sizable for Q2 = 4GeV2. On the other hand in [28] it
has been shown that the NLO corrections are not very
important for x ≥ 10−3. However we will investigate this
matter in our future works in details.

MM acknowledge Tehran University support under contract
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